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mean-field theory
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Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
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Abstract. We present a theory for the spin correlation function of thet–J model in the
framework of the dynamical mean-field theory. Using this mapping between the lattice and
a local model we are able to obtain an intuitive expression for the nonlocal spin susceptibility,
with the corresponding local correlation function as input. The latter is calculated by means of
local Goldstone diagrams following closely the procedures developed and successfully applied
for the (single-impurity) Anderson model. We present a systematic study of the magnetic
susceptibility and compare our results with those of a Hubbard model at largeU . Similarities
and differences are pointed out and the magnetic phase diagram of thet–J model is discussed.

1. Introduction and survey

The description of strongly correlated electron systems involves by and large three different
classes of model. First one may consider a system consisting of uncorrelated delocalized
electronic states hybridizing with localized states subject to a strong Coulomb repulsion.
This situation is modelled by the well known periodic Anderson model [1] frequently used
to describe the so-called heavy-fermion compounds [2]. The second important situation
occurs when the delocalized states themselves feel locally such a strong repulsion. In that
case one is led to the single-band Hubbard model [3], originally set up to describe (ferro-)
magnetism and metal–insulator transitions in 3d transition-metal compounds like V2O3 but
recently also used for the high-Tc superconductors. Another interesting kind of system is
obtained if in addition to those local correlations a nonlocal magnetic exchange is included.
This is the domain of the so-calledt–J model [4] which is frequently taken as an alternative
to the Hubbard model for describing the properties of the cuprate superconductors. It is
this model that we want to study more closely in this paper. Although thet–J model may
be viewed as an effective Hamiltonian for the low-energy properties of the Hubbard model
in the limit of large local Coulomb energy [5], i.e. vanishing effective magnetic exchange,
the two models are expected to differ fundamentally for increasing exchange interaction.

The Hamiltonian of thet–J model reads

Ht−J = − t∗√
2Z

∑
〈ij〉σ

X
(i)

1σ,0X
(j)

0,1σ + J ∗

Z
∑
〈ij〉

Si · Sj . (1)

In equation (1),X(j)

MM ′ = |j, M〉〈j, M ′| are the standard Hubbard operators [6] acting on
states with quantum numberM ∈ {0, 1σ } on sitej , i.e. double occupancy of a site is strictly
forbidden, andSi denotes the spin operator on sitei. The sums in the Hamiltonian (1)
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are over nearest neighbours only. The transfer and exchange integralst and J have been
rescaled with the coordination numberZ of the system to guarantee a physically meaningful
result for large spatial dimensions to be introduced later. Note that forJ ∗ = 0 the model
(1) is the Hubbard model in the limitU = ∞. An additional density–density interaction
frequently included in the model (1) has been dropped here for reasons of convenience.

Although the model (1) looks rather simple, relatively little is knownexactlyabout its
properties. In contrast to the Hubbard model, it is not even exactly solvable ford = 1
except for at the two special pointsJ ∗ = 0 (the Hubbard model) [7] andJ ∗ = 2t∗ (the
supersymmetrict–J model) [8]. Nevertheless, exact diagonalization studies showed that the
t–J model ford = 1 andT = 0 is a Luttinger liquid for allJ < J PS , while for J > JPS

one finds phase separation into an electron-rich and a hole-rich region [9]. Interestingly,
close to this boundary, the ground state of thet–J model is dominated by superconducting
pair correlations [10], while for smallerJ antiferromagnetic correlations are strongest.

Obviously, this would make thet–J model an interesting candidate for explaining,
e.g., high-temperature superconductivity. Unfortunately, the results ford = 1 suggest a
much too large value ofJ ∗/t∗ ∼ 3–4 for this scenario. The interesting question thus is how
these features survive ford > 1 and especially to what extent phase separation might occur
at much lower values ofJ , as suggested by, e.g., high-temperature expansions [11].

While for d = 1 the combination of exact diagonalization and tools of conformal
field theory provides a powerful framework within which to extract information about the
asymptotics of the macroscopic system, similar methods do not exist ford > 1. Quantum
Monte Carlo techniques, too, cannot be applied for realistic lattice sizes and temperatures
due to a severe minus-sign problem. Thus most information about the properties of the
t–J model comes from high-temperature expansions, which are restricted to relatively large
values ofJ ∗ and T [11, 12], and exact diagonalization studies for small two-dimensional
systems [12, 13]. The finite system size in the latter method possibly prevents the resolving
of dynamically generated low-energy features, which one may especially expect close to
half-filling [14–16]. Moreover, to interpret results for dynamic quantities calculated with
this method one generally needs additional information from other techniques about the
general structures to be expected. Clearly, a different approach for obtaining results in the
thermodynamic limit is needed.

Usually, mean-field theory provides a reliable tool for studying at least the qualitative
features of models in theoretical solid-state physics. However, until recently a thermo-
dynamically consistent mean-field theory, like that for spin systems, did not exist for
fermionic models like thet–J model (1): while the magnetic exchange term could in
principle be handled by the standard Hartree factorization it isa priori not obvious how
to treat the correlated hopping introduced by the first term in the model (1) consistently
within this ansatz. Different schemes, usually involving slave-boson techniques, have been
proposed [12]. These methods treat the local dynamics induced by the correlations rather
poorly and a systematic inclusion of fluctuations around the static limit to incorporate
lifetime effects is very cumbersome and has not been successful yet [17].

Over the past three years, however, a novel scheme has been introduced to define a
thermodynamically consistent mean-field theory for correlated systems that preserves the
local dynamics exactly [20–22]. In this contribution we shall use this so-called ‘dynamical
mean-field theory’ to study the mean-field magnetic properties of thet–J model (1). The
paper is organized as follows. In the next section we will briefly introduce the dynamical
mean-field theory and derive expressions for the magnetic susceptibility of thet–J model.
We then present results on the magnetic properties and compare them to the large-U Hubbard
model. A summary and discussion concludes the paper.
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2. Theoretical background

Since the pioneering work of Metzner and Vollhardt [18] and subsequently Müller-Hartmann
[19], Brandt and Mielsch [20] and Janiš [21] it has been known that a correlated lattice
model can be mapped onto an effective-impurity system in the limitd → ∞. This is
one consequence of the important aspect of this limit, namely that the irreducible one-
particle self-energy is purely local [18, 19] and a functional of the local propagator only
[20–23]. This property can be used to rewrite the lattice problem in such a way that one
is left with the solution of an effective single-impurity Anderson model (SIAM), where
the free band states are replaced by an effective medium obtained from the full problem
with the site under consideration removed [20–23]. The one-particle Green’s function or
equivalently the one-particle self-energy of the system are then given by the corresponding
quantities of the effective single-site problem. We shall see later that one can also calculate
the two-particle correlation functions of the lattice system with the help of those of the
effective SIAM. Note that this effective theory preserves the dynamics introduced by the
local correlations and thus is still highly nontrivial since there is no complete solution for the
SIAM. However, there are at least different numerical exact techniques like quantum Monte
Carlo and controlled perturbational approximations for solving this local model [14, 24].
All of these methods can then in turn be used to provide a solution of correlated lattice
modelsin the thermodynamical limit. This approach has become known as thedynamical
mean-field theory. The name is based on the observations that (i) the limitd = ∞ provides
a canonical starting point for the construction of a thermodynamically consistent mean-field
theory [25] and (ii) in contrast to what is found from standard mean-field theory (like,
e.g., that for the Heisenberg model) one obtains a complex, frequency-dependent function
as the molecular field due to the dynamical nature of the local Coulomb repulsion. Note that
with the same arguments one also finds that the contribution to the one-particle self-energy
due to interactions like the spin exchange in the model (1) is given by the corresponding
Hartree diagram only and thus is also purely local and in addition static [19]. The latter
statement means that ford = ∞ the t–J model in the paramagnetic phase (i.e. when
〈Si

z〉 = 0) is identical to the Hubbard model withU = ∞. Considering the one-particle
properties in this regime we thus expect the well known features of the Hubbard model
[14]. The situation of course changes as soon as one has a transition into a magnetic state
which will be discussed elsewhere [16].

2.1. Susceptibility for the t–J model

For our purposes it is convenient to represent the transverse spin susceptibility of thet–J

model as

χt−J
q (iνn) = 1

β2

∑
ωn,ωm

χq(iωn, iωm; iνn)e
i(ωn+ωm)0+

(2)

whereχq(iωn, iωm; iνn) is the spatial Fourier transform of the particle–hole propagator:

χij (iωn, iωm; iνl) = 1

β

β∫
0

dτ1

β∫
0

dτ2

β∫
0

dτ3

β∫
0

dτ4 e−iωm(τ1−τ2)e−iωn(τ3−τ4)e−iνl (τ2−τ4)

×〈Tτ ci↑(τ4)c
+
i↓(τ3)cj↓(τ2)c

+
j↑(τ1)〉t−J . (3)

In equations (2) and (3) iωn and iωm denote Fermi Matsubara frequencies and iνn a Bose
Matsubara frequency. Quite generally, by introducing the irreducible two-particle self-
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energy0
↑↓
ij (iωn, iωm; iνl), the particle–hole propagator (3) can formally be written as

χij (iωn, iωm; iνl) = βχ
(0)
ij (iωn; iνl)δn,m

+ 1

β

∑
lk,iωp

χ
(0)
il (iωn; iνl)0

↑↓
lk (iωn, iωp; iνl)χkj (iωp, iωm; iνl). (4)

Here, χ
(0)
ij (iωn; iνn) = −Gij (iωn)Gji(iωn + iνn) represents the unperturbed part of the

particle–hole propagator andGij (iωn) the full one-particle Green’s function of the system.
Using standard techniques of field theory [20], one can express the irreducible particle–

hole self-energy as a functional derivative of the one-particle self-energy with respect to the
one-particle propagator. In combination with the observation that within the dynamical
mean-field theory (DMFT) (i) the one-particle self-energy is purely local and (ii) the
exchange termJ ∗ enters the one-particle self-energy only at the Hartree level it follows
that the two-particle self-energy acquires the particularly simple form

0
↑↓
lk (iωn, iωp; iνl) = −J ∗

Z δ|l−k|,n.N. + 0↑↓(iωn, iωp; iνl)δlk. (5)

The nontrivial second term is the irreducible particle–hole self-energy forJ ∗ = 0, i.e. for the
U = ∞ Hubbard model. Note that within the DMFT this quantity is also purely local [20]!

Inserting the result (5) into the expression (4) and transforming intoq-space, we obtain
as the transverse magnetic susceptibility of thet–J model in the DMFT

χq(iωn, iωm; iνn) = βχ(0)
q (iωn; iνn)δnm + Jqχ

(0)
q (iωn; iνn)

1

β

∑
p

χq(iωp, iωm; iνn)

+ 1

β

∑
p

χ(0)
q (iωn; iνn)0

↑↓(iωn, iωp; iνn)χq(iωp, iωm; iνn). (6)

In equation (6)Jq denotes the Fourier transform of−(J ∗/Z)δ|i−j |,n.N.. For the case of a
simple hypercubic lattice one, e.g., obtains

Jq = −J ∗

d

d∑
l=1

cos(qla).

The susceptibility (6) contains as one contribution the susceptibility of the Hubbard model
in the limit U = ∞ given by [22]

χHM
q (iωn, iωm; iνn) = βχ(0)

q (iωn; iνn)δnm

+ 1

β

∑
p

χ(0)
q (iωn; iνn)0

↑↓(iωn, iωp; iνn)χ
HM
q (iωp, iωm; iνn). (7)

It is now straightforward to show that with the help of expression (7) equation (6) can be
rewritten as

χq(iωn, iωm; iνn) = χHM
q (iωn, iωm; iνn)

+ Jq
1

β

∑
l

χHM
q (iωn, iωl; iνn)

1

β

∑
p

χq(iωp, iωm; iνn). (8)

Performing the sums overn andm in equation (8) finally leads to the appealing result

χt−J
q (iνn) = χHM

q (iνn) + Jqχ
HM
q (iνn)χ

t−J
q (iνn)

χt−J
q (iνn) = χHM

q (iνn)
[
1 − Jqχ

HM
q (iνn)

]−1 (9)
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as the expression for the magnetic susceptibility of thet–J model in the DMFT. Thus the
major ingredient in the susceptibility of thet–J model is the corresponding quantity of the
HM for U = ∞. One should also note that expression (9) is very similar to the standard
RPA result

χq(iνn; U = 0) = χq(iνn; U = 0, J = 0)
[
1 − Jqχq(iνn; U = 0, J = 0)

]−1
(10)

for the corresponding noninteracting system. Thus, as far as the DMFT for thet–J model is
concerned, the susceptibility is formally obtained by simply replacingχq(iνn; U = 0, J = 0)

by χq(iνn; U = ∞, J = 0) in the RPA formulas. Let us emphasize that this correspondence
holds only on a formal level: the physical situation described by (9) is of course
fundamentally different from the one modelled by (10)!

2.2. The spin susceptibility of the Hubbard model

As already mentioned, the dynamical spin susceptibility of the Hubbard model within the
DMFT is given by equation (7) [22], with only0↑↓(iωn, iωp; iνn) being unknown. Usually,
the direct calculation of quantities like0↑↓(iωn, iωp; iνn) is rather hopeless, especially for
correlated electron systems.

At this point we can use one major aspect of the DMFT, namely that the whole system
is described by an effective local problem [20–23]. We can of course calculate a spin
susceptibility for this effective local problem, which obviously also has the general form
(4) with all quantities being purely local by definition, i.e.

χloc(iωn, iωm; iνl) = χ
(0)
loc (iωn; iνl)

βδn,m + 1

β

∑
iωp

0↑↓(iωn, iωp; iνl)χloc(iωp, iωm; iνl)


(11)

with the same0↑↓(iωn, iωp; iνl) as in equation (7). The latter observation follows directly
from the definition of0↑↓(iωn, iωp; iνl) and the locality of the one-particle self-energy [20].

Combining equations (7) and (11), the susceptibility can be expressed via the local
susceptibility through a matrix equation ([Aq,l ]nm = Aq(iωn, iωm; iνl)):

χq,l =
[↔

1 − 1

β
χloc,lΓ

eff

q,l

]−1

χloc,l

Γeff

q,l = −(χ(0)
q,l

−1 − χ(0)
loc,l

−1
).

(12)

With the definition

[Λl ]m = 3l(iωm) = 1

β

∑
n

χloc(iωn, iωm; iνl)

and the symmetry relationχloc(iωn, iωm; iνl) = χloc(iωm, iωn; −iνl) following from the
definition (3) we can formally perform the frequency sums in (12) to obtain

χHM
q (iνl) = χloc(iνl) + 1

β
ΛT

l Γeff

q,l

↔
1

↔
1 − (1/β)χloc,lΓ

eff

q,l

Λ−l (13)

as the final result for the magnetic susceptibility of the Hubbard model in the framework
of the dynamical molecular-field theory.

It is important to note that until now no explicit reference to the value ofU has been
made, i.e. equation (13) is valid for allU . The form (13) for the susceptibility of the HM
is especially convenient for computational reasons, because the outer sums on Matsubara
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frequencies have been performed exactly. These can pose numerical problems because
[χq,l ]nm decays at most like 1/(nm) for largen, m and one has to exercise care regarding
the correct time ordering in the final sums (cf. equations (6) and (7))—whereas for the inner
sums the products occurring there lead to an asymptotic behaviour decaying at least like
1/n2 and thus a well defined sum.

2.3. The local spin susceptibility

The only unkown quantity in equation (13) is the local susceptibilityχloc(iωn, iωm; iνn)

defined by

χloc(iωn, iωm; iνn) = 1

β

β∫
0

dτ1

β∫
0

dτ2

β∫
0

dτ3

β∫
0

dτ4 e−iωm(τ1−τ2)e−iωn(τ3−τ4)e−iνn(τ2−τ4)

×〈Tτ ci↑(τ4)c
+
i↓(τ3)ci↓(τ2)c

+
i↑(τ1)〉. (14)

Within the DMFT, this function is obtained from the corresponding quantity of an effective
SIAM with the band electrons replaced by the effective medium of the DMFT.

For finite U , the most successful way to solve the effective single-site problem and
calculate functions like (14) is by quantum Monte Carlo techniques [22]. However, since
we are interested in the limitU = ∞ in the current context, this technique is not available.
On the other hand, forU = ∞ the time-ordered perturbation theory [26] provides natural
and easy access to local quantities. In this method one expresses all local quantities through
the resolventsP0(1σ)(z) of the unoccupied (occupied) ionic states. Of course, this theory
cannot be solved exactly, so further approximations have to be introduced. Here, we shall
use the so-called noncrossing approximation (NCA) [26, 27] to calculate these resolvents
and express further local correlation functions of interest. In previous publications we have
already shown that the NCA provides a reliable approximation scheme for calculating such
local quantities [14, 22, 24]. Applying the standard diagrammatic rules of this perturbational
technique [26] in conjunction with the NCA we obtain

χloc(iωn, iωm; iνl) = − 1

Zloc

∮
C

dz

2π i
e−βzP1(z)P1(z − iνl)P0(z − iωn)P0(z − iωm − iνl)

(15)

for the local susceptibility. In equation (15),

Zloc =
∑
M

∮
C

dz

2π i
e−βzPM(z)

denotes the local contribution to the partition function and the contourC surrounds all
singularities of the integrands anticlockwise.

3. Results

3.1. General remarks

The expressions (13) and (15) in principle still allow for the calculation of the dynamical
susceptibility. Unfortunately, the derivation of equation (13) utilizes the representation of all
quantities in Matsubara space, i.e. one would be left with the awkward task of analytically
continuing the results to the real axis. This nontrivial problem is left for a future publication
[28]. In this contribution we will concentrate on the static susceptibility, i.e. we set iνl = 0.
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Before we turn to the actual results for theU = ∞ Hubbard andt–J model let us first
briefly discuss the special limit〈n〉 = 1. In this case the model (1) becomes equivalent
to the Heisenberg model and it is a straightforward task to calculate the molecular-field
expression for the static susceptibility, which reads

χn=1
q = β/2

1 − Jqβ/2
. (16)

Comparing this expression with the result for thet–J model in equation (9), one sees
that obviouslyχHM

q → β/2 for 〈n〉 → 1. On the other hand,β/2 is also exactly the
value we expect for thelocal susceptibility in this limit, i.e.χHM

loc → β/2 for 〈n〉 → 1.
From this it at once follows that the second part in equation (13) will become negligible
for 〈n〉 close to half-filling. On the one hand this offers a rather sensible test for the
numerics involved in calculating the susceptibility for the HM. In addition it provides an
interesting approximateansatzfor the susceptibility of thet–J model obtained by setting
χHM

q ≈ χHM
loc in this limit. Note that this also allows for a simple approximate calculation

of the dynamics sinceχHM
loc (ω) is much easier to obtain thanχHM

q (ω) given by (13). The
latter observation is especially interesting in the light of recent studies by Scalapinoet al
who analysed the dynamical susceptibility for the two-dimensionalt–J model obtained from
exact diagonalization and found that it was rather well described by a form like (9) with
χHM

q (ω) replaced by some local quantity [29].

3.2. The Hubbard model

Let us start by discussing the Lindhardt function

χ(0)
q = − 1

Nβ

∑
ωn,k

Gk+q(iωn)Gk(iωn). (17)

While the whole derivation was completely independent of the actual lattice structure, we
now have to specify the meaning of thek-sum. We here choose a simple cubic lattice in
d dimensions, i.e. the coordination number isZ = 2d, and take the limitd → ∞ to use
the simplifications arising in this limit [19]. Witht∗ = 1 as the unit of energy, one then
obtains for the single-particle DOS the well known Gaussian formρ0(ε) = exp(−ε2)/

√
π

[19] and one can also evaluate thek-sum in equation (17) analytically [19, 20] to yield

χ(0)
q = 1

β

∑
ωn

∞∫
−∞

dε dε′ ρ0(ε)ρ0(ε
′)

(iωn + µ − 6(iωn) − ε)
(

iωn + µ − 6(iωn) − εηq − ε′
√

1 − η2
q

) .

(18)

In relation (18),

ηq =
d∑

l=1

cos(qla)/d

and 6(z) is the one-particle self-energy of the HM for a givenU > 0. Note that the
external wave-vectorq only enters via the functionηq which basically describes surfaces
of constant energy in the simple cubic Brillouin zone. For presentational reasons, we shall
choose the special vectorq = q(1, 1, 1, 1, . . .) and use the numberq with 0 6 q 6 π as
the label rather than−1 6 ηq 6 1.

The Lindhardt functions for the HM for four different values ofU , namely 0, 4, 7 and
∞, at a filling 〈n〉 = 0.95 and for a low temperatureT = 1/30 are shown in figure 1. Note
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0 0.2 0.4 0.6 0.8 1
q

0

0.125

0.25

0.375

0.5

χ(0
) (q

)

0

0.5

1

1.5

2

4

7

∞

U=0

Figure 1. The Lindhardt functions forU = 0, 4, 7 and∞.

the different scales forU = 0 (right-hand scale) andU = 4, 7 and∞ (left-hand scale)!
Without looking at the details it is thus clear that the correlations induced byU strongly
suppress this quantity. In addition one can observe a dramatic change in theq-dependence
with increasingU . While for U = 0 one has a strong peak atq = π due to the nesting
property of the simple cubic Fermi surface close to half-filling, this feature is strongly
suppressed by the damping introduced by the correlations forU = 4, 7 and∞. In addition
there occurs a crossover from the maximum inχ(0)

q being atq = π for small U to it being
at q = 0 for U = ∞. Note also that in contrast to what is found whenU = 0, the total
q-dependence is rather weak in the other cases.

From the previous observation one may deduce two things: first, since forU = ∞
there is no net magnetic exchange between neighbouring sites, we expect from the flatness
of χ(0)

q that alsoχHM
q will be relatively flat as a function ofq; in addition, the fact thatχ(0)

q

is maximal atq = 0 suggests thatχHM
q for U = ∞ will be enhanced atq = 0 rather than

at q ≈ π as expected and observed forU < ∞ [22].
This behaviour can indeed be seen in figure 2, where we have plotted theχHM

q for two
different temperatures as functions ofq and dopingδ = 1 − 〈n〉. The susceptibility was
normalized to its value atδ = 0, i.e. to χHM

q (δ = 0) = β/2. Note that we always find
χHM

q (δ > 0) < χHM
q (δ = 0). From the form (9) for the susceptibility of thet–J model it

then at once follows that alsoχt−J
q (δ > 0) < χt−J

q (δ = 0) for all values ofJ ∗ andq. This
should be compared with results from high-temperature expansions ford = 2 [11] which
suggest a pronounced maximum in the uniform susceptibility at aroundδ = 15% produced
by spin fluctuations not included in the current mean-field treatment.

Another interesting feature in figure 2 is that in all cases the variation withq

is comparatively weak, becoming somewhat stronger for lower temperatures and with
increasing dopingδ. We also observe a slight maximum atq = 0 that becomes more
pronounced for lower temperatures but interestingly weakens with decreasing doping for
T fixed. This observation is substantiated by a look at the doping dependence ofχHM

q in
figure 3 for the local (circles), ferromagneticq = 0 (squares) and antiferromagneticq = π
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β=5

β=40

Figure 2. The susceptibility of the HM atU = ∞ as a function ofq and filling for two different
temperaturesT = 1/5 andT = 1/40.

0 0.02 0.04 0.06 0.08 0.1
δ

0.6

0.7

0.8

0.9

1

χH
M q 
 (

δ)
/χ

(0
)

χloc

χF

χAF

Figure 3. The susceptibility forU = ∞ andβ = 30 as a function ofδ.

(diamonds) susceptibility for an inverse temperatureβ = 30. It is interesting to note that the
antiferromagnetic susceptibility of the HM atU = ∞ is always very close to the local one,
which can be understood by considering the fact that due to the mapping of the HM onto
an equivalent impurity model, the local susceptibility already contains most of the (nearest-
neighbour) antiferromagnetic correlations. Since forU = ∞ there is no additional net
magnetic exchange, the nonlocal corrections only give a small renormalization. In contrast
to this the renormalizations for the ferromagnetic susceptibility are comparatively strong
and definitely tend to enhance this quantity above both the local and antiferromagnetic
susceptibility. These results have to be interpreted in the light of Nagaoka’s theorem [30],
where in the presence ofone holea ferromagnetic state for the background is favoured from
a minimization of the hopping energy in the correlated system but not as a result of a direct
magnetic coupling. Obviously, our results suggest that sizeable ferromagnetic correlations
still exist for a finite number of holes. However, so far we have not found any hint of a
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ferromagnetic instability at low temperatures close to half-filling. This is consistent with the
conjecture that for bipartite lattices—like the simple hypercubic lattice studied here—the
critical hole density for the Nagaoka state should beδc = 0 [31].

Figure 4. The susceptibility of thet–J model as a function ofq for various values ofJ at a
dopingδ = 5% and forβ = 30.

3.3. Results for the t–J model

Inserting the results for the susceptibility of the HM atU = ∞ into equation (9) we
obtain the susceptibility for thet–J model as a function ofq and J ∗ as shown in
figure 4 for 〈n〉 = 0.95 andβ = 30. The explicit exchange now obviously favours the
antiferromagnetic pointq = π and eventually leads to an antiferromagnetically ordered
state forJ ∗ > J ∗

c ≈ 0.085 for this particular parameter set.
The temperature dependences of 1/χt−J

AF for a specific value ofJ ∗ = 0.067 and three
dopingsδ = 2%, δ = 9% andδ = 15% are shown in figure 5. The full curve shows
for comparison the case whereδ = 0, where one has exactly 1/χt−J

AF = 2(T − J ∗/2).
As expected for a mean-field theory, close to the antiferromagnetic transition one finds a
behaviour 1/χt−J

AF = (T − TN)/Ceff in all cases with decreasing Néel temperatureTN and
decreasing effective Curie constantCeff for increasingδ (see, e.g., the inset to figure 5).
It is quite noteworthy that close to half-filling (i.e. forδ = 2%) this linearity extends up to
rather high temperatures. However, with increasing doping one eventually finds appreciable
deviations from this linearity for temperatures well aboveTN . Both TN and Ceff vary
roughly linearly up to 15% doping. We would also like to point out that up to a doping of
δ = 15% we do not observe any tendency towards incommensurate order.

With the method outlined above we are now able to calculate the phase diagram
TN(δ, J ∗) for the t–J model. The results for dopingsδ 6 15% andJ ∗ < 0.12 are shown
in figure 6. One observes the expected increase in the Néel temperatureTN with increasing
J ∗ and a—for largerδ roughly linear—decrease as a function ofδ. We may use this
approximate linearity ofTN(δ) to extrapolate the curvesTN(δ) for a givenJ ∗ to T = 0.
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Figure 5. The inverse susceptibility of thet–J model as a function ofT for J ∗ = 0.067
and three dopingsδ = 2%, δ = 9% and δ = 15%. Close to the phase transition one
observesχ−1

AF (T ) = (T − TN)/Ceff as expected for a mean-field theory. Note that forδ → 0
the linear behaviour is observed up toT = 1t∗. The full line represents half-filling, where
χ−1

AF = 2(T −J ∗/2). The inset shows the dependence of the Néel temperatureTN and effective
Curie constantCeff on δ.

This procedure allows us to obtain an extrapolation for the phase diagramJ ∗
c (δ) of the t–J

model atT = 0. The result is shown in the inset to figure 6. We find that the behaviour of
J ∗

c (δ) is rather accurately described byJ ∗
c ∼ δ2. The phase diagram in figure 6 should be

compared to the DMFT results for the Hubbard model in the strong-coupling limit [32]. In
[32] the authors calculateTN(δ, U) up to U = 7t∗, which would correspond toJ ∗ ≈ 0.14
for the t–J model. They also observe an almost linear dependence ofTN on the doping
δ for large values ofU . However, although the value ofTN for δ → 0 and the observed
linearity agree quite well with our results, the decrease ofTN as a function ofδ for the
Hubbard model atU = 7t∗ is much faster than in our figure 6. In addition one encounters
a transition into an incommensurate state forδ & 12% in the Hubbard model. Currently it
is not clear whether these deviations—especially the lack of an incommensurate magnetic
order for large doping—between the results for the large-U Hubbard model and thet–J

model are real or due to the additional approximations introduced by using the NCA to
solve the effective-impurity problem. One should keep in mind, though, that for finiteU

andJ ∗, respectively, the Hubbard model and thet–J model are expected to show different
physical behaviours: the mapping of the Hubbard model to an effective model with magnetic
exchange generates in addition to the exchange term included in thet–J model also more
complicated couplings, like for instance a three-site term which is also of the order ofJ ∗

[5] and may give rise to quite important corrections to physical quantities [33].
Finally we should like to use the observation that close to half-filling the susceptibility
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Figure 6. The phase diagramTN(δ, J ) for the t–J model. The dashed lines represent (linear)
extrapolations of the phase boundaries toT = 0. The corresponding values ofJc(δ) behave like
Jc(δ) ∼ δ2, as shown in the inset.

Figure 7. The approximate result forSt−J
q (ω) for δ = 5%, T = 1/30 andJ = 0.035.

for the HM is relatively flat with respect toq and obtain an approximation for the dynamical
spin structure factorS(q, ω) = Im mχq(ω)/(1 − e−βω) by assumingχHM

q (ω) ≈ χHM
loc (ω)

in equation (9). This approximation avoids the cumbersome calculation of theq-dependent
susceptibility for finite frequencies. As an example, the result forJ ∗ = 0.035, T = 1/30
andδ = 5% is shown in figure 7. As expected, the maximum inSt−J

q (ω) is found atq = π

andω = 0 and the intensity decays very quickly with increasing energy for allq. Since this
quantity or its value atq = π andω = 0 can be measured by neutron scattering or NMR
relaxation [34], it is definitely necessary to study the dependence on doping, temperature
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andJ ∗ more systematically. This is left for a future publication.

4. Summary and outlook

We have presented a theory and results for the magnetic properties of thet–J model in the
framework of the dynamical mean-field theory, which treats both the correlated hopping
of the fermionic degrees of freedom and the nonlocal exchange coupling between the spin
degrees of freedom on the same footing. As has been pointed out [21], this approach
ensures a thermodynamically consistent description of the properties of the system and, in
particular, does not introduce artificial phase transitions like, e.g., in slave-boson mean-field
theories.

One in our opinion particularly interesting result is that the dynamical susceptibility
of the t–J model can be expressed in an RPA-like fashion in terms of the susceptibility
of the Hubbard model atU = ∞ (cf. equation (9)). In addition the latter can be split
into a local part plus aq-dependent renormalization which for low doping turned out to be
relatively small and only moderately varying withq. We find that in the case whereJ ∗ = 0
(i.e. U = ∞) the absence of an explicit magnetic exchange leads toχHM

q=π ≈ χHM
loc and an

interesting enhancement of the ferromagnetic correlations. This is in contrast to the HM at
finite U , where the effective magnetic exchangeJ ∼ t2/U leads to a strongly enhanced
susceptibilty atq = π and a suppression atq = 0 instead. However, for the situation
considered here—a simple hypercubic lattice with nearest-neighbour hopping only—we
did not observe a tendency towards a magnetic instability atq = 0 for finite doping,
in accordance with results obtained by other groups. The occurrence of an enhanced
ferromagnetic susceptibility for the Hubbard model in the limitU = ∞ nevertheless
motivates a more detailed investigation of the mean-field properties of the Hubbard model
in this particular limit for different lattice structures and longer-range hopping.

A finite magnetic exchangeJ ∗ again strongly enhances the antiferromagnetic
susceptibility. When one further increasesJ ∗ one eventually encounters a phase transition
into an antiferromagnetic phase at a critical valueJ ∗

c (T , δ). From our results onχHM
AF (T , δ)

we extracted the phase diagramTN(δ, J ∗). We found thatTN increases monotonically as a
function of J ∗ and—for fixedJ ∗—decreases monotonically as a function ofδ. For larger
dopingδ we observed that the curvesTN(δ) for different but fixed values ofJ ∗ are almost
linear. This linearity agrees at least qualitatively with DMFT results for the Hubbard model
at finiteU , where one finds a crossover from standard weak-coupling behaviour ofTN(δ) for
small U to an almost linear variation forU > 7t∗. However, in contrast to our results one
observes a much faster depression ofTN as a function ofδ and in addition a transition into
an incommensurate phase for largeδ. In particular, the latter feature was not reproduced in
our calculations. The linearity ofTN(δ) finally allowed us to extrapolate our data to obtain
an approximation for the magnetic phase boundary of thet–J model atT = 0.

The relatively weak dependence of the susceptibility of the HM onq was used to set up
an approximation for the dynamical susceptibility by assumingχHM

q (ω) ≈ χHM
loc (ω), thus

giving to some extent a microscopic justification of the results in [29]. Since in addition
χHM

loc (ω) can be calculated fairly easy from the effective single-site problem we were able
to present results for the dynamical spin structure factorSt−J

q (ω). The general expected
features, i.e. a sharp maximum atq = π and ω = 0, a shift of the maximum to finiteω
for q < π and a fast decay forω > 0, are well reproduced. There are of course several
questions left. First of all one should check the assumption of a nearlyq-independent
χHM

q (ω) carefully for several values of doping and temperature. Second a systematic study
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of St−J
q (ω) as a function of doping and temperature is clearly needed. Another important

issue not yet addressed concerns phase separation in thet–J model, which among other
problems requires, e.g., the evaluation of the compressibility in the antiferromagnetic phase.
Work along these lines is in progress.

Finally, one should stress again that the results presented here were calculated with a
generalized mean-field theory or equivalently for the limitd = ∞. This obviously means
that their applicability to, e.g., thet–J model ford = 2 or d = 3 is unclear. From high-
temperature expansions or exact diagonalizations ford = 2 one knows, for example, that
the static homogeneous susceptibility shows a nonmonotonic behaviour as a function of
δ, which may be attributed to fluctuations induced by the spin-flip term in the model (1).
Since the DMFT neglects this type of process it is not too surprising that in our results we
always observe a monotonic decrease instead. We thus expect that the predictions of the
DMFT will be modified not only quantitatively but most likely also qualitatively, especially
for two-dimensional systems.
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